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Abstract/Outline:
Observed fact: heavy ion plasma expands upward into magnetosphere with 

solar wind energy inputs, inflating magnetosphere
“Auroral Wind”, by analogy with Solar and Polar Winds
Driven by dissipation of solar wind energy into topside ionosphere  
Both kinetic heating via precipitation and heating by Poynting EM flux
Lyon Fedder Mobarry MHD global circulation models ionospheric inputs 
Ionospheric global outflows assessed, compared with statistical data sets  
Conclusion: simulated substorm events also produce substantial

 O+ global outflows, match or exceed statistical outflows
Reprint: http://temoore.gsfc.nasa.gov/public/
Movies: http://hpb.gsfc.nasa.gov/public/traj/
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O+ Outflow Grows with ∇Pd
(H+ doesn’t)

• Cusp dayside 
auroral region 
outflows: 

• Strong correl. with 
Pd variability

• Weak correl. with 
IMF Bz

• Largest fluxes seen 
in superstorms, up 
to 2 x 1010 cm-2s-1

2
Sept 24-25 1998 event was a specific example illustrating the correlation 
between outflow strength and variations in the solar wind plasma pressure

Outflow strength increases with variations 
in the solar wind ram pressure
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Log(O+Flux) = 8.8+1.02Log(SDP)
R=.77

Moore et al., 1999GRL, 2001RSS
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O+ Grows Exponentially with Dst
(H+ doesn’t)

3

Nosé, Christon, Taguchi, Moore, Collier, JGR 2005, “Overwhelming O+…• H+ relatively 
indep. of Dst 

• Inner Plasma 
Sheet and 
Ring Current

• Numerous 
consistent 
results

• O+ exceeds H+ 
for Dst < -150

• Overwhelming 
in superstorms
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Local Auroral Wind OutFlow Conditions
Dst, Kp, AE internal, global
IMF, Pd external, but don’t 

specify full spatio-
temporal dynamics

Factors:
1. Ion heating:

a. Poynting Flux 
b. Thermal ion heating 

2. Electron heating:
a. Ne precip. (>50 eV)
b. Thermal electron 

heating
3. Both needed for outflow
4. Ion heating proxy for ELF
5. PA diff’n for precipitation
6. Limiting O+ flux exists

Strangeway et al., 2005; Zheng et al., 2005
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Strangeway [2005 JGR]; Zheng [2005 JGR]
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Specifying O+ Outflows

5

Parameter Scaling Notes
Auroral wind 
O+ flux

NVprecip = 2.8e9 ×(Nei)2.2  [cm-2s-1]
NVpoynt = 5.6e7 ×(0.245*S120)1.26 [cm-2s-1]
NV = √(NVprecip × NV poynt)
Strangeway et al. [2005 JGR]
Zheng [2005 JGR]
G. mean makes both necessary for outflow
All fluxes mapped to 1000 km altitude

Nei is LFM density in cm-3 
above instrumental 50 eV 
in loss cone with filling per 
Chen and Schulz [2001 JGR]
S120 is LFM Poynting flux in mW/m2 
at 120 km altitude; 0.245 maps from 
120 to 4000 km alt. 

Auroral wind 
O+ temperature

0.1 + 9.2*(0.24*S120)^0.35  [eV] Strangeway [private communication]

Parallel energy E// [eV] = Eth + ePhi[V] where 
Phi[V] =1500[V/µAm-2] *(J// - 0.33)2 
[µA m-2]

Lyons [1981 Geo.Mono. 25] 
Threshold current 0.33 µA/m2 
Also applied to polar wind, below

Polar Wind 
H+ flux

0 < SZA < 90: F1000 = 2x108 cm-2s-1

90 < SZA < 110:
NV1000 = 2 x 10^(8-(SZA-90)/20*2.5)
110< SZA < 180:  F1000 = 2 x 105.5 

Su et al., [1998 JGR] solar zenith angle 
(SZA) dependence 
All fluxes at 1000 km altitude

Table 1. Local empirical scalings used to initialize ionospheric particles 
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Boundary Conditions: SBz
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Boundary Conditions: ∇Pd
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Global Auroral Wind Outflow Fluence

• Top Trace: 
fluence during a period 
of enhanced dynamic 
pressure (4.5 nPa) with 
steady EBy 

• Bottom Trace: 
fluence during a 
substorm sequence 
from NBz to SBz to 
NBz at 0.8 nPa

• Note Yau 1988 range
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Test Particles in LFM 
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• Strengths:
• Pathways can be traced
• Drifts and non-adiabatic behavior can be computed
• Dynamic importance of ionosphere can be assessed

• Weaknesses:
• Problematic to do plasmaspheric ions 
• Inner magnetospheric convection strength lacking
• Not self consistent since no O+ load on system

• Opportunities:
• Embed inner magnetosphere model, e.g. CRCM
• Integrate dynamic auroral wind into global simulation

• Threats: 
• Improved understanding and predictions
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Solar Wind for N/SBz
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Solar Wind Pathways to Plasmasheet
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Auroral Wind Circulation: N/SBz
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Auroral Wind Pathways to Plasmasheet
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Global Energy Content - SBz

• Low total energy 
content from MHD 
results

• Comparable polar 
wind and solar wind 
initially

• Switch from solar 
wind to auroral wind 
with substorm onset 
(tail reconnection)

• Auroral wind takes 
over in SS
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Solar Wind for ∇Pd
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Auroral Wind Circulation: ∇Pd
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Global Energy Content - ∇Pd

• Again, low total 
energy content from 
MHD results

• Comparable polar 
wind and solar wind 
initially, AW starts 
higher than either

• SW responds to Pd
• AW responds 

initially, fades, then 
more when outflows 
arrive

• AW remains late
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CONCLUSIONS

Ionospheric outflows always important but O+ increases steeply 
with solar wind drivers, especially with Pd, and Dst

New empirical models permit detailed local response to global 
magnetospheric inputs.

Imposing global circulation model (GCM) inner boundary 
conditions yields outflows consistent with statistical databases

These outflows acquire substantial hot plasma energy content in 
GCM fields. 

Future Work
• Improve empirical or simulation models of wave environments 

important for electron precipitation and ion heating
• Incorporate topside ionospheric outflow physics in global simulations
• Study realistic storm sequences

18


